Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.952
1.
Bioorg Med Chem Lett ; 105: 129760, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38641151

The naturally occurring bile acid lithocholic acid (LCA) has been a crucial core structure for many non-sugar-containing sialyltranferase (ST) inhibitors documented in literature. With the aim of elucidating the impact of the terminal carboxyl acid substituent of LCA on its ST inhibition, in this present study, we report the (bio)isosteric replacement-based design and synthesis of sulfonate and sulfate analogues of LCA. Among these compounds, the sulfate analogue SPP-002 was found to selectively inhibit N-glycan sialylation by at least an order of magnitude, indicating a substantial improvement in both potency and selectivity when compared to the unmodified parent bile acid. Molecular docking analysis supported the stronger binding of the synthetic analogue in the enzyme active site. Treatment with SPP-002 also hampered the migration, adhesion, and invasion of MDA-MB-231 cells in vitro by suppressing the expression of signaling proteins involved in the cancer metastasis-associated integrin/FAK/paxillin pathway. In totality, these findings offer not only a novel structural scaffold but also valuable insights for the future development of more potent and selective ST inhibitors with potential therapeutic effects against tumor cancer metastasis.


Lithocholic Acid , Molecular Docking Simulation , Sialyltransferases , Lithocholic Acid/pharmacology , Lithocholic Acid/chemistry , Lithocholic Acid/chemical synthesis , Lithocholic Acid/analogs & derivatives , Humans , Sialyltransferases/antagonists & inhibitors , Sialyltransferases/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Sulfates/chemistry , Sulfates/pharmacology , Sulfates/chemical synthesis , Neoplasm Metastasis , Sulfonic Acids/pharmacology , Sulfonic Acids/chemistry , Sulfonic Acids/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Cell Adhesion/drug effects , Dose-Response Relationship, Drug , Paxillin/metabolism , Paxillin/antagonists & inhibitors , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/metabolism , Drug Discovery
2.
J Cell Biol ; 223(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38466167

Focal adhesions (FAs) are transmembrane protein assemblies mediating cell-matrix connection. Although protein liquid-liquid phase separation (LLPS) has been tied to the organization and dynamics of FAs, the underlying mechanisms remain unclear. Here, we experimentally tune the LLPS of PXN/Paxillin, an essential scaffold protein of FAs, by utilizing a light-inducible Cry2 system in different cell types. In addition to nucleating FA components, light-triggered PXN LLPS potently activates integrin signaling and subsequently accelerates cell spreading. In contrast to the homotypic interaction-driven LLPS of PXN in vitro, PXN condensates in cells are associated with the plasma membrane and modulated by actomyosin contraction and client proteins of FAs. Interestingly, non-specific weak intermolecular interactions synergize with specific molecular interactions to mediate the multicomponent condensation of PXN and are efficient in promoting FA assembly and integrin signaling. Thus, our data establish an active role of the PXN phase transition into a condensed membrane-associated compartment in promoting the assembly/maturation of FAs.


Focal Adhesions , Paxillin , Phase Separation , Humans , Actin Cytoskeleton , Focal Adhesions/metabolism , Integrins/metabolism , Paxillin/chemistry , Paxillin/metabolism
3.
Invest Ophthalmol Vis Sci ; 65(3): 15, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38466286

Purpose: To explore the role of substrate stiffness and the mechanism beneath corneal endothelial cells' (CECs') stemness maintenance and differentiation. Methods: CECs were divided into central zone (8 mm trephined boundary) and peripheral zone (8 mm trephined edge with attached limbal). Two zones were analyzed by hematoxylin-eosin staining and scanning electron microscopy for anatomic structure. The elastic modulus of Descemet's membrane (DM) was analyzed by atomic force microscopy. Compressed type I collagen gels with different stiffness were constructed as an in vitro model system to test the role of stiffness on phenotype using cultured rabbit CECs. Cell morphology, expression and intracellular distribution of Yes-associated protein (YAP), differentiation (ZO-1, Na+/K+-ATPase), stemness (FOXD3, CD34, Sox2, Oct3/4), and endothelial-mesenchymal transition (EnMT) markers were analyzed by immunofluorescence, quantitative RT-PCR, and Western blot. Results: The results showed that the peripheral area of rabbit and human DM is softer than the central area ex vivo. Using the biomimetic extracellular matrix collagen gels in vitro model, we then demonstrated that soft substrate weakens the differentiation and EnMT in the culture of CECs. It was further proved by the inhibitor experiment that soft substrate enhances stemness maintenance via inhibition of paxillin-YAP signaling, which was activated on a stiff substrate. Conclusions: Our findings confirm that substrate stiffness modulates the stemness maintenance and differentiation of CECs and suggest a potential strategy for CEC-based corneal tissue engineering.


Endothelial Cells , Endothelium, Corneal , Humans , Animals , Rabbits , Paxillin , Cornea , Sodium-Potassium-Exchanging ATPase , Gels
4.
J Neurosci ; 44(11)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38326036

Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.


Brain Injuries, Traumatic , Intercellular Adhesion Molecule-1 , Animals , Female , Humans , Male , Mice , Brain/metabolism , Brain Injuries, Traumatic/metabolism , CRISPR-Cas Systems , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Leukocytes , Paxillin , rho GTP-Binding Proteins/metabolism
5.
ACS Appl Mater Interfaces ; 16(8): 9944-9955, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38354103

The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.


Focal Adhesions , Mechanotransduction, Cellular , Paxillin/metabolism , Vinculin/metabolism , Focal Adhesions/metabolism , Cell Adhesion/physiology , Polymers/metabolism , Phosphoproteins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism
6.
Zhonghua Zhong Liu Za Zhi ; 46(2): 108-117, 2024 Feb 23.
Article Zh | MEDLINE | ID: mdl-38418184

Objective: To investigate the role and the mechanism of Ras-associated binding protein23 (RAB23) in the migration and invasion of esophageal squamous cell carcinoma (ESCC) cells. Methods: RAB23 mRNA levels were measured in 16 pairs of ESCC and adjacent normal tissues via real-time polymerase chain reactions. RAB23 mRNA levels in the ESCC and adjacent normal tissues of dataset GSE20347 deposited in the Gene Expression Omnibus (GEO) database were also analyzed. Immunohistochemistry (IHC) was used to detect the RAB23 protein expressions in 106 pairs of ESCC and adjacent normal tissues, as well as in the lymph glands and primary tumor tissues of 33 patients with positive lymph nodes and 10 patients with negative lymph nodes. Endogenous RAB23 expression was transiently depleted using siRNAs (si-NC, si-RAB23-1, and si-RAB23-9) or stably reduced using shRNAs (sh-NC and sh-RAB23) in ESCC KYSE30 and KYSE150 cells, and the knockdown efficiency was tested using Western blot assays. Cell counting kit-8 assays and mouse xenograft models were used to test the proliferation of ESCC cells. Transwell assays and tail vein-pulmonary metastasis models in immunocompromised mice were used to examine the migration and invasion of ESCC cells. Cell adhesion assays were used to test the adhesion of ESCC cells. RNA-seq assays were used to analyze how RAB23 knockdown influenced the expression profile of ESCC cells and the implicated signal pathways were confirmed using Western blot assays. Results: The RAB23 mRNA expression in 16 cases of ESCC tissues was 0.009 7±0.008 9, which was markedly higher than that in adjacent normal tissues (0.003 2±0.003 7, P=0.006). GEO analysis on RAB23 expressions in ESCC and adjacent normal tissues showed that the RAB23 mRNA level in ESCC tissues (4.30±0.25) was remarkably increased compared with their normal counterparts (4.10±0.17, P=0.037). Among the 106 pairs of ESCC and tumor-adjacent normal tissues, 51 cases exhibited low expression of RAB23 and 55 cases showed high expression of RAB23, whereas in the paired tumor-adjacent normal tissues 82 cases were stained weakly and 24 strongly for RAB23 protein. These results indicated that RAB23 expression was markedly increased in ESCC tissues (P<0.001). Additionally, only 1 out of 33 primary ESCC tissues with positive lymph nodes showed low RAB23 protein expression. On the other hand, 7 samples of primary ESCC tissues with negative lymph nodes were stained strongly for RAB23 while its level in the other 3 samples was weak. These results showed that RAB23 expression was remarkably increased in primary ESCC tissues with positive lymph nodes compared with those with negative lymph nodes (P=0.024). Further tests showed that 32 out of 33 positive lymph nodes were stained strongly for RAB23, whereas no negative lymph nodes (n=10) exhibited high expression of RAB23 (P<0.001). Both transient and stable knockdown of endogenous RAB23 expression failed to cause detectable changes in the proliferation of KYSE30 cells in vitro and in vivo, but attenuated the migration and invasion of KYSE30 cells as well as the invasion of KYSE150 cells. RAB23 knockdown was found to significantly decrease the number of adhesive KYSE30 cells in the sh-RAB23 group (313.75±89.34) compared with control cells in the sh-NC group (1 030.75±134.29, P<0.001). RAB23 knockdown was also found to significantly decrease the number of adhesive KYSE150 cells in the sh-RAB23 group (710.5±31.74) compared with the number of control cells in the sh-NC group (1 005.75±61.09, P<0.001). RNA-seq assays demonstrated that RAB23 knockdown using two siRNAs targeting RAB23 mRNA markedly impaired focal adhesion-related signal pathways, and decreased the levels of phosphorylated FAK (p-FAK) and phosphorylated paxillin (p-paxillin) in KYSE30 and KYSE150 cells. Conclusions: Significantly increased RAB23 in ESCC tissues positively correlates with lymph node metastasis. Depleted RAB23 expression attenuates focal adhesion-related signal pathways, thus impairing the invasion, metastasis, and adhesion of ESCC cells.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Animals , Mice , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Paxillin/genetics , Paxillin/metabolism , Carrier Proteins/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Cell Line, Tumor , Cell Movement , Neoplasm Invasiveness/genetics , Cell Proliferation , RNA, Small Interfering/genetics , RNA, Messenger , Gene Expression Regulation, Neoplastic , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
7.
Anticancer Res ; 44(2): 511-520, 2024 Feb.
Article En | MEDLINE | ID: mdl-38307570

BACKGROUND/AIM: Colorectal cancer (CRC) is the third most common cancer worldwide, and metastasis is strongly associated with poor prognosis in patients with CRC. We have previously found that the expression and phosphorylation of paxillin (PXN) play an important role in the metastatic potential of breast cancer. This study examined the potential role of PXN in CRC metastasis. MATERIALS AND METHODS: Resected tumor specimens from 92 patients with CRC were subjected to immunohistochemical analysis of PXN levels. Three human CRC cell lines, HCT116, LoVo, and SW480 were used for scratch and transwell invasion assays to examine the effects of PXN over-expression. RNA sequencing was performed to obtain the expression profiles under PXN over-expression. RESULTS: High levels of PXN were significantly correlated with advanced stage, higher carcinoembryonic antigen and carbohydrate antigen 19-9 levels, and poorer overall survival. The migration ability of CRC cells was enhanced by exogenous PXN over-expression, but this enhancement was not observed in cells harboring exogenously mutated PXN at Tyr31 or Tyr88 phosphorylation sites. In PXN-over-expressing cells, TNF-α signaling via NF-[Formula: see text]B was positively enriched. CONCLUSION: PXN expression and phosphorylation at Tyr31 or Tyr88 may influence the migration and invasion of CRC cells. PXN expression and phosphorylation at Tyr31 or Tyr88 are promising targets for evaluating prognosis and treating CRC.


Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Paxillin , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Neoplasm Metastasis , Paxillin/genetics , Paxillin/metabolism , Phosphorylation , Prognosis
8.
Cell Commun Signal ; 22(1): 58, 2024 01 22.
Article En | MEDLINE | ID: mdl-38254202

BACKGROUND: The Ca2+-independent contraction of vascular smooth muscle is a leading cause of cardiovascular and cerebrovascular spasms. In the previous study, we demonstrated the involvement of Src family protein tyrosine kinase Fyn and Rho-kinase in the sphingosylphosphorylcholine (SPC)-induced abnormal and Ca2+-independent contraction of vascular smooth muscle, but the specific mechanism has not been completely clarified. METHODS: Paxillin knockdown human coronary artery smooth muscle cells (CASMCs) and smooth muscle-specific paxillin knockout mice were generated by using paxillin shRNA and the tamoxifen-inducible Cre-LoxP system, respectively. CASMCs contraction was observed by time-lapse recording. The vessel contractility was measured by using a myography assay. Fyn, Rho-kinase, and myosin light chain activation were assessed by immunoprecipitation and western blotting. The paxillin expression and actin stress fibers were visualized by histological analysis and immunofluorescent staining. RESULTS: The SPC-induced abnormal contraction was inhibited in paxillin knockdown CASMCs and arteries of paxillin knockout mice, indicating that paxillin is involved in this abnormal contraction. Further study showed that paxillin knockdown inhibited the SPC-induced Rho-kinase activation without affecting Fyn activation. In addition, paxillin knockdown significantly inhibited the SPC-induced actin stress fiber formation and myosin light chain phosphorylation. These results suggest that paxillin, as an upstream molecule of Rho-kinase, is involved in the SPC-induced abnormal contraction of vascular smooth muscle. CONCLUSIONS: The present study demonstrated that paxillin participates in the SPC-induced abnormal vascular smooth muscle contraction by regulating Rho-kinase activation. Video Abstract.


Muscle, Smooth, Vascular , Paxillin , rho-Associated Kinases , Animals , Humans , Mice , Actins , Mice, Knockout , Myosin Light Chains , Phosphorylcholine/analogs & derivatives , Sphingosine/analogs & derivatives
9.
Physiol Rep ; 12(1): e15897, 2024 Jan.
Article En | MEDLINE | ID: mdl-38163671

SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.


Nephrosis , Podocytes , Mice , Animals , Podocytes/metabolism , Paxillin/metabolism , Vinculin/metabolism , Talin/genetics , Talin/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Doxorubicin/toxicity , Protein Serine-Threonine Kinases/metabolism
10.
Invest Ophthalmol Vis Sci ; 65(1): 19, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38190128

Purpose: Apolipoprotein A1 (APOA1) is a potential crucial protein and treatment goal for pathological myopia in humans. This study set out to discover the function of APOA1 in scleral remodeling in myopia and its underlying mechanisms. Methods: A myopic cell model was induced using hypoxia. Following loss- and gain-of function experiments, the expression of the myofibroblast transdifferentiation-related and collagen production-related factors Forkhead box M1 (FOXM1), APOA1, and methyltransferase-like 3 (METTL3) in the myopic cell model was examined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The proliferation and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Chromatin immunoprecipitation (ChIP) was employed to examine FOXM1 enrichment in the METTL3 promoter, methylated RNA immunoprecipitation (Me-RIP) to examine the N6-methyladenosine (m6A) modification level of APOA1, and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to examine the binding between METTL3 and APOA1. Results: Hypoxia-induced human scleral fibroblasts (HSFs) had high APOA1 and FOXM1 expression and low METTL3 expression. FOXM1 knockdown elevated METTL3 expression and downregulated APOA1 expression. FOXM1 was enriched in METTL3 promoter. APOA1 or FOXM1 knockdown or METTL3 overexpression reversed the hypoxia-induced elevation in vinculin, paxillin, and α-smooth muscle actin (α-SMA) levels and apoptosis and the reduction in collagen, type I, alpha 1 (COL1A1) level and cell proliferation in HSFs. METTL3 or YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) knockdown or APOA1 overexpression reversed the impacts of FOXM1 knockdown on vinculin, paxillin, α-SMA, and COL1A1 expression and cell proliferation and apoptosis. Conclusions: FOXM1 elevated the m6A methylation level of APOA1 by repressing METTL3 transcription and enhanced APOA1 mRNA stability and transcription by reducing the YTHDF2-recognized m6A methylated transcripts.


Apolipoprotein A-I , Myopia, Degenerative , Humans , Paxillin , Vinculin , Transcription Factors , Hypoxia , Methyltransferases/genetics , Forkhead Box Protein M1/genetics , RNA-Binding Proteins
11.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119628, 2024 02.
Article En | MEDLINE | ID: mdl-37949303

Endogenous electric fields (EFs) have been demonstrated to facilitate wound healing by directing the migration of epidermal cells. Despite the identification of numerous molecules and signaling pathways that are crucial for the directional migration of keratinocytes under EFs, the underlying molecular mechanisms remain undefined. Previous studies have indicated that microtubule (MT) acetylation is linked to cell migration, while Paxillin exerts a significant influence on cell motility. Therefore, we postulated that Paxillin could enhance EF-induced directional migration of keratinocytes by modulating MT acetylation. In the present study, we observed that EFs (200 mV/mm) induced migration of human immortalized epidermal cells (HaCaT) towards the anode, while upregulating Paxillin, downregulating HDAC6, and increasing the level of microtubule acetylation. Our findings suggested that Paxillin plays a pivotal role in inhibiting HDAC6-mediated microtubule acetylation during directional migration under EF regulation. Conversely, downregulation of Paxillin decreased microtubule acetylation and electrotaxis of epidermal cells by promoting HDAC6 expression, and this effect could be reversed by the addition of tubacin, an HDAC6-specific inhibitor. Furthermore, we observed that EFs also mediated the polarization of Paxillin and acetylated α-tubulin, which is critical for directional migration. In conclusion, our study revealed that MT acetylation in EF-guided keratinocyte migration is regulated by the Paxillin/HDAC6 signaling pathway, providing a novel theoretical foundation for the molecular mechanism of EF-guided directional migration of keratinocytes.


Keratinocytes , Microtubules , Humans , Paxillin/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Acetylation , Microtubules/metabolism , Keratinocytes/metabolism
12.
Hum Cell ; 37(1): 181-192, 2024 Jan.
Article En | MEDLINE | ID: mdl-37787969

Stem cell therapy is a promising treatment in regenerative medicine. Human adipose-derived stem/stromal cells (hASCs), a type of mesenchymal stem cell, are easy to harvest. In plastic and aesthetic surgery, hASC may be applied in the treatment of fat grafting, wound healing, and scar remodeling. Platelet-rich plasma (PRP) contains various growth factors, including platelet-derived growth factor (PDGF), which accelerates wound healing. We previously reported that PRP promotes the proliferation of hASC via multiple signaling pathways, and we evaluated the effect of PRP on the stimulation of hASC adhesion and migration, leading to the proliferation of these cells. When hASCs were treated with PRP, AKT, ERK1/2, paxillin and RhoA were rapidly activated. PRP treatment led to the formation of F-actin stress fibers. Strong signals for integrin ß1, paxillin and RhoA at the cell periphery of RPR-treated cells indicated focal adhesion. PRP promoted cell adhesion and movement of hASC, compared with the control group. Imatinib, an inhibitor of the PDGF receptor tyrosine kinase, inhibited the promotion of PRP-dependent cell migration. PDGF treatment of hASCs also stimulated cell adhesion and migration but to a lesser extent than PRP treatment. PRP promoted the adhesion and the migration of hASC, mediated by the activation of AKT in the integrin signaling pathway. PRP treatment was more effective than PDGF treatment in enhancing cell migration. Thus, the ability of PRPs to promote migration of hASC to enhance cell growth is evident.


Mesenchymal Stem Cells , Platelet-Rich Plasma , Humans , Paxillin/metabolism , Cell Adhesion , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/physiology , Mesenchymal Stem Cells/metabolism , Platelet-Rich Plasma/metabolism
13.
J Oral Biosci ; 66(1): 160-169, 2024 Mar.
Article En | MEDLINE | ID: mdl-38048849

OBJECTIVES: This in vitro study aimed to evaluate the cell viability and expression of proteins related to angiogenesis, adhesion, and cell survival (vascular endothelial growth factor, paxillin, vinculin, fibronectin, and protein kinase B) in gingival fibroblasts that were cultured on titanium discs treated with or without nanohydroxyapatite and exposed to platelet-rich fibrin (PRF)-conditioned medium. METHODS: To obtain the conditioned medium, the PRF membranes were prepared and incubated for 48 h in a culture medium without fetal bovine serum. Analyses were performed at 24 and 48 h for the cells cultured on machined-titanium discs or surfaces treated with nanohydroxyapatite in a control medium or PRF-conditioned medium, resulting in four experimental groups (CT-TI, CT-NANO, PRF-TI, and PRF-NANO). RESULTS: A decrease in the viability of the gingival fibroblasts was not observed in any of the experimental groups. The PRF-NANO group showed significantly higher immunoexpression of paxillin and AKT at 24 and 48 h (p < 0.01). The same result was observed for vinculin expression at 24 h (p < 0.001). The expression of fibronectin at 48 h and VEGF at 24 and 48 h was significantly higher when the cells were exposed to the PRF-conditioned medium, regardless of the disc surface (p < 0.05). CONCLUSION: Gingival fibroblasts cultured on a nanohydroxyapatite-treated surface and in a PRF-conditioned medium showed a greater expression of proteins modulating adhesion, angiogenesis, and cell survival. Our results may contribute to the understanding of the mechanisms related to peri-implant soft tissue sealing.


Dental Implants , Platelet-Rich Fibrin , Fibronectins , Titanium/pharmacology , Paxillin , Vinculin , Cells, Cultured , Vascular Endothelial Growth Factor A , Angiogenesis , Culture Media, Conditioned/pharmacology , Cell Proliferation , Fibroblasts
14.
J Orthop Res ; 42(5): 985-992, 2024 May.
Article En | MEDLINE | ID: mdl-38044475

Lidocaine is the most frequently applied local infiltration anesthetic agent for treating tendinopathies. However, studies have discovered lidocaine to negatively affect tendon healing. In the current study, the molecular mechanisms and effects of lidocaine on tenocyte migration were evaluated. We treated tenocytes intrinsic to the Achilles tendons of Sprague-Dawley rats with lidocaine. The migration ability of cells was analyzed using electric cell-substrate impedance sensing (ECIS) and scratch wound assay. We then used a microscope to evaluate the cell spread. We assessed filamentous actin (F-actin) cytoskeleton formation through immunofluorescence staining. In addition, we used Western blot analysis to analyze the expression of phospho-focal adhesion kinase (FAK), FAK, phospho-paxillin, paxillin, and F-actin. We discovered that lidocaine had an inhibitory effect on the migration of tenocytes in the scratch wound assay and on the ECIS chip. Lidocaine treatment suppressed cell spreading and changed the cell morphology and F-actin distribution. Lidocaine reduced F-actin formation in the tenocyte during cell spreading; furthermore, it inhibited phospho-FAK, F-actin, and phospho-paxillin expression in the tenocytes. Our study revealed that lidocaine inhibits the spread and migration of tenocytes. The molecular mechanism potentially underlying this effect is downregulation of F-actin, phospho-FAK, and phospho-paxillin expression when cells are treated with lidocaine.


Achilles Tendon , Actins , Rats , Animals , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Paxillin/metabolism , Paxillin/pharmacology , Actins/metabolism , Phosphorylation , Tenocytes/metabolism , Lidocaine/pharmacology , Cell Movement , Rats, Sprague-Dawley , Cell Adhesion
15.
Environ Toxicol ; 39(4): 2077-2085, 2024 Apr.
Article En | MEDLINE | ID: mdl-38100242

Colorectal cancer (CRC) exhibits highly metastatic potential even in the early stages of tumor progression. Gallic acid (GA), a common phenolic compound in plants, is known to possess potent antioxidant and anticancer activities, thereby inducing cell death or cell cycle arrest. However, whether GA reduces the invasiveness of CRC cells without inducing cell death remains unclear. Herein, we aimed to investigate the antimetastatic activity of low-dose GA on CRC cells and determine its underlying mechanism. Cell viability and tumorigenicity were analyzed by MTS, cell adhesion, and colony formation assay. Invasiveness was demonstrated using migration and invasion assays. Changes in protein phosphorylation and expression were assessed by Western blot. The involvement of microRNAs was validated by microarray analysis and anti-miR antagonist. Our findings showed that lower dose of GA (≤100 µM) did not affect cell viability but reduced the capabilities of colony formation, cell adhesion, and invasiveness in CRC cells. Cellularly, GA downregulated the cellular level of integrin αV/ß3, talin-1, and tensin and diminished the phosphorylated FAK, paxillin, Src, and AKT in DLD-1 cells. Microarray results revealed that GA increased miR-1247-3p expression, and pretreatment of anti-miR antagonist against miR-1247-3p restored the GA-reduced integrin αV/ß3 and the GA-inhibited paxillin activation in DLD-1 cells. Consistently, the in vivo xenograft model showed that GA administration inhibited tumor growth and liver metastasis derived from DLD-1 cells. Collectively, our findings indicated that GA inhibited the metastatic capabilities of CRC cells, which may result from the suppression of integrin/FAK axis mediated by miR1247-3p.


Colorectal Neoplasms , MicroRNAs , Humans , Paxillin/genetics , Paxillin/metabolism , Integrins/genetics , Integrins/metabolism , Gallic Acid/pharmacology , Antagomirs , Integrin alphaV/metabolism , Cell Line, Tumor , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/metabolism , Cell Movement , Gene Expression Regulation, Neoplastic
16.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article En | MEDLINE | ID: mdl-38139355

Primary cilia play a significant role in influencing cell fate, including apoptosis in multiple cell types. In the lesional epidermis of vitiligo patients, a reduced number of ciliated cells was observed. Our study also revealed a downregulation of oral-facial digital syndrome type 1 (OFD1) in the affected skin of vitiligo patients. However, it remains unknown whether primary cilia are involved in the control of melanocyte apoptosis. While both intraflagellar transport 88 (IFT88) and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) are associated with ciliogenesis in melanocytes, only the knockdown of OFD1, but not IFT88 and RPGRIP1L, resulted in increased melanocyte apoptosis. OFD1 knockdown led to a decrease in the expression of proteins involved in cell-extracellular matrix (ECM) interactions, including paxillin. The OFD1 amino acid residues 601-1012 interacted with paxillin, while the amino acid residues 1-601 were associated with ciliogenesis, suggesting that the OFD1 domains responsible for paxillin binding are distinct from those involved in ciliogenesis. OFD1 knockdown, but not IFT88 knockdown, inhibited melanocyte adhesion to the ECM, a defect that was restored by paxillin overexpression. In summary, our findings indicate that the downregulation of OFD1 induces melanocyte apoptosis, independent of any impairment in ciliogenesis, by reducing melanocyte adhesion to the ECM via paxillin.


Cell Adhesion , Melanocytes , Paxillin , Vitiligo , Humans , Extracellular Matrix/metabolism , Melanocytes/metabolism , Paxillin/genetics , Paxillin/metabolism , Proteins/metabolism , Vitiligo/metabolism
17.
Int J Mol Sci ; 24(21)2023 Nov 05.
Article En | MEDLINE | ID: mdl-37958964

Metastasis is the leading cause of death in breast cancer patients due to the lack of effective therapies. Elevated levels of paxillin expression have been observed in various cancer types, with tyrosine phosphorylation shown to play a critical role in driving cancer cell migration. However, the specific impact of the distinct tyrosine phosphorylation events of paxillin in the progression of breast cancer remains to be fully elucidated. Here, we found that paxillin overexpression in breast cancer tissue is associated with a patient's poor prognosis. Paxillin knockdown inhibited the migration and invasion of breast cancer cells. Furthermore, the phosphorylation of paxillin tyrosine residue 31 (Tyr31) was significantly increased upon the TGF-ß1-induced migration and invasion of breast cancer cells. Inhibiting Fyn activity or silencing Fyn decreases paxillin Tyr31 phosphorylation. The wild-type and constitutively active Fyn directly phosphorylate paxillin Tyr31 in an in vitro system, indicating that Fyn directly phosphorylates paxillin Tyr31. Additionally, the non-phosphorylatable mutant of paxillin at Tyr31 reduces actin stress fiber formation, migration, and invasion of breast cancer cells. Taken together, our results provide direct evidence that Fyn-mediated paxillin Tyr31 phosphorylation is required for breast cancer migration and invasion, suggesting that targeting paxillin Tyr31 phosphorylation could be a potential therapeutic strategy for mitigating breast cancer metastasis.


Breast Neoplasms , Female , Humans , Breast Neoplasms/metabolism , Cell Movement , Paxillin/metabolism , Phosphorylation , Tyrosine/metabolism
18.
EMBO Rep ; 24(11): e56850, 2023 11 06.
Article En | MEDLINE | ID: mdl-37846507

The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.


Breast Neoplasms , Humans , Female , Paxillin/metabolism , Mechanotransduction, Cellular , Phosphorylation , Cell Movement , Serine/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
19.
J Cell Sci ; 136(18)2023 09 15.
Article En | MEDLINE | ID: mdl-37667902

Liver injury leads to fibrosis and cirrhosis. The primary mechanism underlying the fibrogenic response is the activation of hepatic stellate cells (HSCs), which are 'quiescent' in normal liver but become 'activated' after injury by transdifferentiating into extracellular matrix (ECM)-secreting myofibroblasts. Given that integrins are important in HSC activation and fibrogenesis, we hypothesized that paxillin, a key downstream effector in integrin signaling, might be critical in the fibrosis pathway. Using a cell-culture-based model of HSC activation and in vivo models of liver injury, we found that paxillin is upregulated in activated HSCs and fibrotic livers. Overexpression of paxillin (both in vitro and in vivo) led to increased ECM protein expression, and depletion of paxillin in a novel conditional mouse injury model reduced fibrosis. The mechanism by which paxillin mediated this effect appeared to be through the actin cytoskeleton, which signals to the ERK pathway and induces ECM protein production. These data highlight a novel role for paxillin in HSC biology and fibrosis.


Actins , Hepatic Stellate Cells , Mice , Animals , Paxillin/genetics , Paxillin/metabolism , Actins/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Polymerization , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver/metabolism , Fibrosis , Disease Models, Animal
20.
Int J Oral Sci ; 15(1): 32, 2023 08 02.
Article En | MEDLINE | ID: mdl-37532712

Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2ß1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2ß1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.


Carcinoma, Squamous Cell , Extracellular Vesicles , Mouth Neoplasms , Humans , Paxillin/metabolism , Protein-Lysine 6-Oxidase/metabolism , Carcinoma, Squamous Cell/pathology , Epithelial-Mesenchymal Transition , Integrin alpha2beta1/metabolism , Mouth Neoplasms/pathology , Collagen/metabolism , Fibroblasts , Extracellular Vesicles/metabolism , Cell Line, Tumor , Tumor Microenvironment
...